602 research outputs found

    Radio-X-ray Synergy to discover and Study Jetted Tidal Disruption Events

    Get PDF
    Observational consequences of tidal disruption of stars (TDEs) by supermassive black holes (SMBHs) can enable us to discover quiescent SMBHs, constrain their mass function, study formation and evolution of transient accretion disks and jet formation. A couple of jetted TDEs have been recently claimed in hard X-rays, challenging jet models, previously applied to γ\gamma-ray bursts and active galactic nuclei. It is therefore of paramount importance to increase the current sample. In this paper, we find that the best strategy is not to use up-coming X-ray instruments alone, which will yield between several (e-Rosita) and a couple of hundreds (Einstein Probe) events per year below redshift one. We rather claim that a more efficient TDE hunter will be the Square Kilometer Array (SKA) operating {\it in survey mode} at 1.4 GHz. It may detect up to several hundreds of events per year below z∼2.5z \sim 2.5 with a peak rate of a few tens per year at z≈0.5z\approx 0.5. Therefore, even if the jet production efficiency is {\it not } 100%100\% as assumed here, the predicted rates should be large enough to allow for statistical studies. The characteristic TDE decay of t−5/3t^{-5/3}, however, is not seen in radio, whose flux is quite featureless. {\it Identification} therefore requires localization and prompt repointing by higher energy instruments. If radio candidates would be repointed within a day by future X-ray observatories (e.g. Athena and LOFT-like missions), it will be possible to detect up to ≈400\approx 400 X-ray counterparts, almost up to redshift 22. The shortcome is that only for redshift below ≈0.4\approx 0.4 the trigger times will be less than 10 days from the explosion. In this regard the X-ray surveys are better suited to probe the beginning of the flare, and are therefore complementary to SKA.Comment: Astrophysical Journal (revised version

    Evolution of globular cluster systems in three galaxies of the Fornax cluster

    Get PDF
    We studied and compared the radial profiles of globular clusters and of the stellar bulge component in three galaxies of the Fornax cluster observed with the WFPC2 of the HST. A careful comparative analysis of these distributions confirms that stars are more concentrated toward the galactic centres than globular clusters, in agreement with what was observed in many other galaxies. If the observed difference is the result of evolution of the globular cluster system sstarting from initial profiles similar to those of the halo--bulge stellar components, a relevant fraction of their mass (74%, 47%, 52% for NGC 1379, NGC 1399 and NGC 1404, respectively) is disappeared in the inner regions, likely contributing to the nuclear field population, local dynamics and high energy phenomena in the primeval life of the galaxy. An indication in favour of the evolutionary interpretation of the difference between the globular cluster system and stellar bulge radial profiles is given by the positive correlation we found between the value of the mass lost from the GCS and the central galactic black hole mass in the set of seven galaxies for which these data are available.Comment: paper submitted to MNRAS; 8 pages, including 4 figures and 1 tabl

    LOFT as a discovery machine for jetted Tidal Disruption Events

    Get PDF
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of jetted tidal disruption events. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timin

    Perspectives of blazar studies with future space missions

    Get PDF
    Since the AGILE and Fermi launch, the synergy between gamma-ray experiments and other space- and ground-based observatories has been the key to carry out multi-wavelength campaign aimed at understanding the physical mechanisms responsible for the observed gamma-ray emission in astrophysical sources. Blazars are the best examples of astrophysical sources where this strategy has been applied. The big efforts put in place for blazars to obtain coordinated observations with a broad coverage of the electromagnetic spectrum are providing new diagnostics of the physical processes at work in these sources, raising a lot of challenges for the theoretical interpretation. These could be partially solved through further observations with ground- and space-based facilities, therefore requiring new advances in technology and mission profile design. We will discuss how the lessons learned from current -ray observatories represent an important heritage for future missions expected to play a crucial role in the understanding of extreme phenomena in the high-energy domain

    The assembly of massive galaxies from NIR observations of the Hubble Deep Field South

    Full text link
    We use a deep K(AB)<25 galaxy sample in the Hubble Deep Field South to trace the evolution of the cosmological stellar mass density from z~ 0.5 to z~3. We find clear evidence for a decrease of the average stellar mass density at high redshift, 2<z<3.2, that is 15^{+25}_{-5}% of the local value, two times higher than what observed in the Hubble Deep Field North. To take into account for the selection effects, we define a homogeneous subsample of galaxies with 10^{10}M_\odot \leq M_* \leq 10^{11}M_\odot: in this sample, the mass density at z>2 is 20^{+20}_{-5} % of the local value. In the mass--limited subsample at z>2, the fraction of passively fading galaxies is at most 25%, although they can contribute up to about 40% of the stellar mass density. On the other hand, star--forming galaxies at z>2 form stars with an average specific rate at least ~4 x10^{-10} yr−1^{-1}, 3 times higher than the z<~1 value. This implies that UV bright star--forming galaxies are substancial contributors to the rise of the stellar mass density with cosmic time. Although these results are globally consistent with Λ\Lambda--CDM scenarios, the present rendition of semi analytic models fails to match the stellar mass density produced by more massive galaxies present at z>2.Comment: Accepted for publication on ApJLetter
    • …
    corecore